Tuning the microwave absorption through engineered nanostructures in co-continuous polymer blends

نویسندگان

  • Sourav Biswas
  • Suryasarathi Bose
چکیده

Herein, we report tailor-made properties by dispersing nanostructuredmaterials in a co-continuous polymer blend (PVDF/ABS) that is capable of shielding electromagnetic (EM) radiation. To accomplish this, lossymaterials were employed likemulti-walled carbon nanotubes (MWNTs), and barium titanate (BT), (which exhibit relaxation losses in themicrowave frequency domain) and ferrites (like Fe3O4). To improve the state of dispersion, theMWNTswere non-covalentlymodified using 3,4,9,10-perylenetetracarboxylic dianhydride (PTCD) viaπ–π stacking, and for effective shielding theMWNTswere conjugatedwith either BTor Fe3O4 nanoparticles through suitable modifications. The hybrid nanoparticles were selectively localized in the PVDFphase, governed by its polarity, and exhibited excellentmicrowave attenuation. In order to gain insight into the dielectric and magnetic attributes, themicrowave parameters were assessed systematically. Taken together, our results uncover polymer blend as a promising candidate for designing lightweight, thermally stable microwave absorbermaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attenuating microwave radiation by absorption through controlled nanoparticle localization in PC/PVDF blends.

Nanoscale ordering in a polymer blend structure is indispensable to obtain materials with tailored properties. It was established here that controlling the arrangement of nanoparticles, with different characteristics, in co-continuous PC/PVDF (polycarbonate/poly(vinylidene fluoride)) blends can result in outstanding microwave absorption (ca. 90%). An excellent reflection loss (RL) of ca. -71 dB...

متن کامل

Strontium hexa-ferrites and polyaniline nanocomposite: Studies of magnetization, coercivity, morphology and microwave absorption

In this work, the investigation of wave absorption, phase formation, crystal structure and magnetic properties of SrFe12O19 hexa-ferrites nanoparticles that synthesized by co-precipitation using a microwave heating system and polyaniline-SrFe12O19 was carried out by using a combination of vector network analyser (VNA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier tra...

متن کامل

Improving Radar Absorbing Capability of Polystyrene Nanocomposites: Preparation and Investigation of Microwave Absorbing Properties

Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene ...

متن کامل

A Facile and Green Biosynthesis of Silver Nanostructures by Aqueous Extract of Suaeda Acuminata after Microwave Assisted Extraction

In the present study, a simple, efficient and fast synthetic strategy was reported for the green biosynthesis of silver nanostructures (i.e. nanoroads and nanoparticles) by the extract of Suaeda Acuminata plant, without any catalyst, template or surfactant. Aqueous extracts were obtained by maceration and microwave assisted extraction (MAE) methods. In MAE procedure, the effec...

متن کامل

Effective Parameters on the Phase Morphology and Mechanical Properties of PP/PET/SEBS Ternary Polymer Blends

In this work, ternary polymer blends based on polypropylene (PP)/ polyethylene terephthalate (PET) /poly(styrene-b (ethylene-co-butylene)-b-styrene) (SEBS) triblock copolymer and a reactive maleic anhydride grafted SEBS (SEBS-g-MAH) at various compositions were prepared by co-rotating twin screw extruder. The effects of PET, SEBS and SEBS-g-MAH compatibilizer on morphology of the blends were ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016